

	
3GPP TSG-SA5 Meeting #129-e	S5-201418
Online, , 24th Feb 2020 - 4th Mar 2020
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	32.423
	CR
	[bookmark: _GoBack]0101
	rev
	-
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Add streaming format for Trace Record Reporting

	
	

	Source to WG:
	Oy LM Ericsson AB

	Source to TSG:
	S5

	
	

	Work item code:
	OAM_RTT
	
	Date:
	2020-02-14

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	3GPP lacks a standardized streaming format for Trace

	
	

	Summary of change:
	A stage 3 specification of a Trace Record format is added, along with normative examples.

	
	

	Consequences if not approved:
	Streamed Trace Record format will remain vendor specific.

	
	

	Clauses affected:
	X

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc10820429]First change
X	Trace streaming format
X.1 Introduction
This clause defines the format of streamed trace records and reports.
X.2 Definition of the Trace Record
X.2.1 Introduction
The Trace Record comprises a header and payload as shown in Figure X.2.1.1.

[bookmark: _Hlk32615495][bookmark: _Hlk32615799] Trace Record
Payload
Header
Vendor specific
extension
Common
fields
Vendor Specified
Content
Size

Figure X.2.1.1: Trace Record
The Header contains common fields plus an optional vendor-specific extension as defined in clause X.1.1.
The Payload contains an optional size field plus vendor-specific content as defined in clause X.1.2.

X.2.2 Definition of the Trace Record Header
The trace record header contains the fields defined in Table X.2.2.1
Table X.2.2.1 : Fields in the trace record header
	[bookmark: _Hlk20989631]Trace Record Header field name
	Description

	timeStamp (M)
	Time stamp (milliseconds since Epoch) of when the trace record is produced internally in the Producer (64 bit integer)

	nfInstanceId (M)
	Id of the Producer NF instance (String)

	nfType (M)
	Type of the Producer NF (String)

	traceReference (O)
	Trace Reference (String)

	traceRecordingSessionReference (O)
	Trace Recording Session Reference (String)

	traceRecordTypeId (M)
	Identifier of the trace record type (64 bit integer)

	ranUeId(O)
	RAN defined Id of the UE (8 byte octet string)

	payloadSchemaURI (M)
	URI identifying the schema to decode the payload (String)

	vendorExtension (O)
	Vendor-specific extension (Array of String)

The traceReference and traceRecordingSessionReference are mandatory for signalling based activation.
The ranUeId field is mandatory in UE-related trace records. At present ranUeId is only defined for F1 (38.473) and E1 (38.463).
The vendorExtension is defined as a generic name-value pair list.
X.2.3 Definition of the trace record payload
The trace record payload comprises the fields defined in Table X.2.3.1.
Table X.2.3.1 : Fields in the trace record payload
	Trace Record Payload parameter name
	Description

	payloadSize (O)
	Size of payload, in bytes (64 bit integer)

	payload (M)
	Array of bytes

The payloadSize indicates the payload size. It may be omitted if the solution set specific encoding/decoding has its own support for indicating the size.
The payload is a sequence of bytes representing the binary encoded data of the specific trace record:
· For example, record content per TS 32.423 “Trace Record Content for gNB-CU-CP, gNB-CU-UP, gNB-DU (and ng-eNB and E-UTRAN)” with schema indicated in header field payloadSchemaURI required for decoding.

X.2.4 Trace Administrative Record Definitions
X.2.4.1 	Introduction
The following Trace Record messages are defined to for trace stream management purposes.
These administrative messages use specific enum values in the Trace Record header for the ‘traceRecordTypeId’ field as follows:
0: Trace Session Start
1: Trace Session Stop
2: Trace Stream Heartbeat
Such Trace Records may also contain vendor specific header extensions or payload with additional data.
X.2.4.2 Trace Session start trace record
The following Trace Record is sent to trace consumer at the start of a streaming trace session.
Table X.2.4.2.1 : Fields in the trace record header
	Trace Record Header field name
	Description

	timeStamp (M)
	Time stamp (milliseconds since Epoch) of when the trace record is produced internally in the Producer (64 bit integer)

	nfInstanceId (M)
	Id of the Producer NF instance (String)

	nfType (M)
	Type of the Producer NF (String)

	traceReference (O)
	Trace Reference (String)

	traceRecordingSessionReference (O)
	Trace Recording Session Reference (String)

	traceRecordTypeId (M)
	0 (traceSessionStart)

	ranUeId(O)
	RAN defined Id of the UE (8 byte octet string)

	payloadSchemaURI (M)
	URI identifying the schema to decode the payload (String)

	vendorExtension (O)
	Vendor-specific extension (Array of String)

The traceReference and traceRecordingSessionReference are optional for admin records, including signalling-based.
X.2.4.3 Trace Session stop trace record
The following Trace Record is sent to trace consumer at the end of a streaming trace session.
Table X.2.4.3.1 : Fields in the trace record header
	Trace Record Header field name
	Description

	timeStamp (M)
	Time stamp (milliseconds since Epoch) of when the trace record is produced internally in the Producer (64 bit integer)

	nfInstanceId (M)
	Id of the Producer NF instance (String)

	nfType (M)
	Type of the Producer NF (String)

	traceReference (O)
	Trace Reference (String)

	traceRecordingSessionReference (O)
	Trace Recording Session Reference (String)

	traceRecordTypeId (M)
	1 (traceSessionStop)

	ranUeId(O)
	RAN defined Id of the UE (8 byte octet string)

	payloadSchemaURI (M)
	URI identifying the schema to decode the payload (String)

	vendorExtension (O)
	Vendor-specific extension (Array of String)

The traceReference and traceRecordingSessionReference are optional for admin records, including signalling-based.
X.2.4.4 Trace Stream Heartbeat trace record
The following Trace Record is sent periodically to trace consumer.
	Trace Record Header field name
	Description

	timeStamp (M)
	Time stamp (milliseconds since Epoch) of when the trace record is produced internally in the Producer (64 bit integer)

	nfInstanceId (M)
	Id of the Producer NF instance (String)

	nfType (M)
	Type of the Producer NF (String)

	traceReference (O)
	Trace Reference (String)

	traceRecordingSessionReference (O)
	Trace Recording Session Reference (String)

	traceRecordTypeId (M)
	2 (traceStreamHeartbeat)

	ranUeId(O)
	RAN defined Id of the UE (8 byte octet string)

	payloadSchemaURI (M)
	URI identifying the schema to decode the payload (String)

	vendorExtension (O)
	Vendor-specific extension (Array of String)

The message is intended to indicate that a trace stream connection is alive and is sent regardless of whether there is an ongoing Trace Session or not.
An interval of at least 60 secs is recommended.
X.2.5 Trace session management
The configuration and management of trace data, including activation and configuration of equipment and subscriber trace is defined in 3GPP TS 32.422.
X.3 Trace Record stream transport
X.3.1 Introduction
Trace Records are carried in stream transport protocol-specific messages comprising a header and payload as defined in Figure X.3.1.1.

[image:]
Figure X.3.1.1: Transport of Trace Records

Each trace stream protocol-specific message delivers one or more trace records from the Producer to the Consumer.
The Header is transport protocol specific. It may contain protocol specific extensions or options related to the stream.
The Payload is Trace Records as specified in sec X.1, with implementation specific encoding.

[bookmark: _Hlk32393647]X.3.2 Handling of trace stream
[bookmark: _Hlk32393613]Functions such as message routing or filtering performed by a centralized stream collection mechanism, or configuration of client/server extensions would be done using the protocol-specific mechanism.
For streaming trace data, the following is requested to be included in the appropriate transport mechanism:
· Indicator of whether the stream is compressed
A message can be split across multiple frames if supported by the protocol.
See Annex <x> for an example implementation.

 Next change

Annex <x1> (informative):
Example of protocol stack
Example stream-based Trace Report message (Figure X.3) realized via “The Websocket Protocol” (RFC4255):
[image:]
Stream metadata defined in X.3.2 via “Compression Extensions for Websocket” (RFC7692).

 Next change

Annex <x2> (informative):
Example Protocol Buffer (GPB) definitions

Example 1: Trace Record schema, defined per clause 1.1 in this specification:

syntax = “proto3”;

/* Trace Record per 3GPP 32.423 specification.
 * v16
 */

Message TraceRecordHeader {
 required int64 time_stamp = 1;
 required string nf_instance_id = 2;
 required string nf_type = 3;
 optional string trace_ref = 4;
 required int64 trace_rec_type = 5;
 optional string trace_rec_session_ref = 6;
 optional int64 ran_ue_id = 7;
 required string payload_schema_uri = 8;
 optional vendor_extension = 9;
}

Message TraceRecordPayload {
	optional int64 size = 1;
 required bytes payload = 2;
}

message TraceRecord {
 required TraceRecordHeader header = 1;
 required TraceRecordPayload payload = 2;
}

Example 2: Trace Record payload, 3GPP-based vendor-specific schema:
syntax="proto3";

/**
 * Description: Event for monitoring RRC Setup procedure.
 * v16
 */

message CuCpProcRrcEstab {
 enum EstablishmentCause{
 ESTABLISHMENT_CAUSE_EMERGENCY = 1;
 ESTABLISHMENT_CAUSE_HIGH_PRIORITY_ACCESS = 2;
 ESTABLISHMENT_CAUSE_MT_ACCESS = 3;
 ESTABLISHMENT_CAUSE_MO_SIGNALLING = 4;
 ESTABLISHMENT_CAUSE_MO_DATA = 5;
 ESTABLISHMENT_CAUSE_MO_VOICE_CALL = 6;
 }
 enum RrcConnEstabResult{
 RRC_CONN_ESTAB_RESULT_SUCCESS = 1;
 RRC_CONN_ESTAB_RESULT_UNSPECIFIED = 2;
 RRC_CONN_ESTAB_RESULT_NO_RADIO_RESOURCES_AVAILABLE = 3;
 RRC_CONN_ESTAB_RESULT_FAILURE_IN_RADIO_PROCEDURE = 4;
 }
 enum PmBooleanType{
 PM_BOOLEAN_FALSE = 1;
 PM_BOOLEAN_TRUE = 2;
 }
 bytes main_plmn_id = 1;
 int64 gnb_id = 2;
 int64 time_stamp_start = 3;
 int64 time_stamp_stop = 4;
 EstablishmentCause establishment_cause = 5;
 bool reattempt_indicator = 6;
 RrcConnEstabResult rrc_conn_estab_result = 7;
 bytes ue_trace_id = 8;
 int64 nci = 9;
 int64 gnb_id_length = 10;
 PmBooleanType reattempt_indicator_param = 11;
}

Example 3: Trace Record payload, 3GPP-based vendor-specific schema, including ASN.1 message:
syntax="proto3";

/**
 * Description: Event for monitoring EN-DC 3GPP X2-AP SGNB ADDITION REQUEST message.
 *
 * Version: 16
 */
message CuCpX2SgnbAdditionRequest {
 enum SgnbAdditionTriggerIndication{
 SGNB_ADDITION_TRIGGER_INDICATION_ENDC_SETUP = 1;
 SGNB_ADDITION_TRIGGER_INDICATION_SN_CHANGE = 2;
 SGNB_ADDITION_TRIGGER_INDICATION_ENB_HO = 3;
 SGNB_ADDITION_TRIGGER_INDICATION_OTHER_VALUE = 4;
 }
 enum MsgDirection{
 MSG_DIRECTION_SEND = 1;
 MSG_DIRECTION_RECEIVE = 2;
 }
 enum ProtocolName{
 PROTOCOL_NAME_RRC_36_331_BCCH_BCH_MESSAGE = 1;
 PROTOCOL_NAME_RRC_36_331_BCCH_DL_SCH_MESSAGE = 2;
 PROTOCOL_NAME_RRC_36_331_DL_CCCH_MESSAGE = 3;
 PROTOCOL_NAME_RRC_36_331_DL_DCCH_MESSAGE = 4;
 PROTOCOL_NAME_RRC_36_331_PCCH_MESSAGE = 5;
 PROTOCOL_NAME_RRC_36_331_UL_CCCH_MESSAGE = 6;
 PROTOCOL_NAME_RRC_36_331_UL_DCCH_MESSAGE = 7;
 PROTOCOL_NAME_RRC_38_331_BCCH_BCH_MESSAGE = 8;
 PROTOCOL_NAME_RRC_38_331_BCCH_DL_SCH_MESSAGE = 9;
 PROTOCOL_NAME_RRC_38_331_DL_CCCH_MESSAGE = 10;
 PROTOCOL_NAME_RRC_38_331_DL_DCCH_MESSAGE = 11;
 PROTOCOL_NAME_RRC_38_331_PCCH_MESSAGE = 12;
 PROTOCOL_NAME_RRC_38_331_UL_CCCH_MESSAGE = 13;
 PROTOCOL_NAME_RRC_38_331_UL_DCCH_MESSAGE = 14;
 PROTOCOL_NAME_S1AP_36_413 = 15;
 PROTOCOL_NAME_X2AP_36_423 = 16;
 PROTOCOL_NAME_NGAP_38_413 = 17;
 PROTOCOL_NAME_XNAP_38_423 = 18;
 }
 message Asn1Message {
 MsgDirection msg_direction = 1;
 bytes msg_content = 2;
 repeated ProtocolName protocol_name = 3;
 }
 bytes main_plmn_id = 1;
 int64 gnb_id = 2;
 int64 nci = 3;
 SgnbAdditionTriggerIndication sgnb_addition_trigger_indication = 4;
 Asn1Message asn1 = 5;
 int64 gnb_id_length = 6;
}

 Next change

Annex <x3> (informative):
Example Protocol Buffer (GPB) stream admin messages
The follow examples show trace stream administrative messages as defined in sec X1.2.
The examples are in compact GPB format, using the schema defined in Annex X.1.

Example, Trace stream start messages:

Example non-signalling based:

1: 1581525683
2: 100
3: 1
5: 0
8: urn:3gpp:ns:tracestream:start:1.0

Example signalling based:

1: 1581525683
2: 100
3: 1
4: 1000
5: 0
6: 0001
8: urn:3gpp:ns:tracestream:start:1.0

Example 2, Trace stream stop messages:

Example non-signalling based:

1: 1581525684
2: 100
3: 1
5: 1
8: urn:3gpp:ns:tracestream:stop:1.0

Example signalling based:

1: 1581525684
2: 100
3: 1
4: 1000
5: 1
6: 0001
8: urn:3gpp:ns:tracestream:stop:1.0

Example 3, Trace stream heartbeat message:

1: 1581525685
2: 100
3: 1
5: 2
8: urn:3gpp:ns:tracestream:heartbeat:1.0

End of changes
image1.png

image2.png

